DIELECTRIC DIFFERENTIAL THERMAL ANALYSIS. PART VII. KAOLINS

N. Vega*, R. Roque-Malherbe and C. Gonzales*

NATIONAL CENTER FOR SCIENTIFIC RESEARCH, P.O. BOX 6690, HAVANA, CUBA *GEOLOGICAL RESEARCH INSTITUTE, HAVANA, CUBA

(Received March 28, 1988; in revised form, Novemer 29, 1988)

Thermodielectric analysis has been used to test some very well-characterized kaolins from Cuban deposits. The samples were analysed by thermal analysis, X-ray diffraction, infrared spectrometry, electron microscopy and chemical analysis.

The dielectrical thermograms show that the most evident effect for the hydrated versions is the water peak. The second dielectric effect, at high temperatures, is related to the cationic conductions. A relation involving the K content of the sample was observed.

Kaolin is usually a fine white clay used in pottery making. It is comprised of clays from the kaolinite group and other minerals, included as impurities, which contribute to its physical and chemical properties.

The structure of kaolinite has been carefully studied [1-5] and its thermal behaviour is also well understood [6, 7]. In the present paper, thermodielectric analysis is used to test some very well-characterized kaolins from Cuban deposits.

Experimental

The tested samples were selected from the "Rio del Callejon" deposit (Youth Island), the "Dumañuecos 2" deposit (Las Tunas Province) and the "El Cobre" deposit (Santiago de Cuba Province), and analysed by thermal analysis (TA), X-ray diffraction (XRD), infrared spectrometry (IR), electron microscopy (EM) and chemical analysis. In all cases, the analysed fractions had a particle size of less than 20 µm, obtained by the classical Stokes law procedure.

Experimental conditions for the MOM 1550 derivatographic studies were: sample weight: 200 mg; reference material: annealed Al_2O_3 ; sample holders: ceramic crucibles; heating rate: 10 deg/min; furnace atmosphere: air; DTA 1/5; DTG 1/10; TG 200 mg. The conditions for the DRON 2 diffractometer were: goniometer rate:

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

		•					
Sample	Locality	Color	XRD	TA	IR	EM	
		black	baolinite and mica	kaolinite. black coal	kaolinite and	irregular hexagonal	
KC-I	Kio Callejon	UIACN	Vaulinic and more	and mica	a little quartz	crystals	
	Die Calleion	white	kaolinite, mica	kaolinite and mica	kaolinite and	regular hexagonal	
KC7		21114	and dickite		a little quartz	crystals	
a t a	Dumañnecos	white	kaolinite and	kaolinite and	kaolinite and	kaolinite with no	
N1 1 N2			a little mica	a little mica	vermiculite	regular hexagonal crystals	
0	[Dumañuecos	white	kaolinite, a little	kaolinite and	kaolinite and	kaolinite with no regular	
۲ ₃			mica and vermiculite	a little mica	vermiculite	hexagonal crystals	
۵	Dumañilecos	white	kaolinite. mica	kaolinite and mica	kaolinite and	kaolinite with no regular	
4	D ujuanucos		and vermiculite		vermiculite	hexagonal crystals	
ر	Cohre	white	mixed laver of	mixed layer and	montmorinollite,	mixed layer	
5			mica and	a little calcite	mica, trydimite		
			montmorinollite		and calcite		
ر	Cohre	white	hallovsite and	halloysite, chlorite	halloysite and	halloysíte with tubular	
7 2			a little chlorite	and gibbsite	chlorite	forms	
ن ن	Cobre	white	dickite and a little	kaolinite	dickite	well-ordered dickite	
s 1			mixed layer				

Table 1 Sample characterization by XRD, TA, IR and EM

J. Thermal Anal. 35, 1989

1360

VEGA et al.: DIELECTRIC DIFFERENTIAL THERMAL

Sample	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	FeO .	TiO ₂	MgO	CaO	MnO	Na ₂ O	K20	SO ₃	P_2O_5	Loss on ignition
_	60.60	24.35	0.37	0.25	0.80	0.56	0.15	0.1	0.11	2.21	0.5	0.50	9.94
2	49.02	34.41	0.36	0.14	1.47	0.25	0.15	0.01	0.10	1.18	0.5	0.07	11.90
\mathbf{R}_2	50.70	31.68	0.45	0.99	0.67	0.45	0.24	0.02	0.10	0.85	0.88	0.04	12.16
	50.84	32.82	0.13	0.85	0.83	0.23	0.35	0.01	0.1	1.28	1.24	0.05	11.78
	51.82	32.07	0.45	1.02	0.81	0.32	0.15	> 0.01	0.1	3.03	1.00	0.05	10.18
	53.73	28.23	0.68		1.49	1.97	0.60		0.26	6.73			6.62
	48.68	30.43	0.98		0.74	2.45	1.43		0.77	0.99			12.50
	47.04	39.33	0.16		0.37	> 0.1	0.19		> 0.1	> 0.1			13.74

kaolins
different
of the
analysis c
Chemical
2
Table

1/2 deg/min; radiation: Cu(K_a); angular range: 5–35°; time constant: 2 sec; sensitivity: 1000 imp/sec; voltage: 35 kV; anodic current 20 mA. IR spectra were recorded with a Carl Zeiss IR-71 spectrometer in the range 400-4000 cm⁻¹, with 0.2 mg of sample in KBr. The EM observations were carried out with a JEOL 100 S electron microscope. Thermodielectric thermograms were obtained in the equipment described in Part I of this series [8] with the conditions established in Parts II to VI [9–12]. The results of the characterization are reported in Tables 1 and 2.

Results and discussion

Figures 1-3 present dielectric thermograms of the samples.

The most evident effect is seen for sample C_2 , which is fundamentally composed of halloysite, (Si, Al)₄O₁₀(OH)₈ ·4H₂O [3], and which exhibits a very strong water peak [11], clearly related with the existence of water in the tubular which halloysite structure. R₃ and **R**₄, contain vermiculite, $(Si, Al)_4(O_{10}(OH)_2Mg_{3.35} \cdot 4.5H_2O[5])$, also display a marked water peak, whereas $R_1 + R_2$, which consists only of kaolinite, $Si_2O_5(OH)_4Al_2$ [5], and mica, $(Si_6Al_2)K_2Al_4O_{20}(OH)_4$ [3], is not hydrated. On the other hand, C₁ (a mixed layer comprised of 70% mica and 30% montmorinollite) shows a poorly-developed water peak, and C₃ (comprised fundamentally of dickite, Si₂O₅(OH)₄Al₂[5], a nonhydrated mineral) has no water peak. Samples RC-1 and RC-2 could contain (non-

Fig. 1 Dielectric thermograms (output voltage (V₀) vs. temperature) of samples RC-1 and RC-2

J. Thermal Anal. 35, 1989

Fig. 2 Dielectric thermograms of samples C1, C2 and C3

Fig. 3 Dielectric thermograms of samples $R_1 + R_2$, R_3 and R_4

identified) halloysite (halloysite and kaolinite are very similar and are difficult to identify by X-ray diffraction), and it is possible to ascribe the water peak to this.

In connection with the second dielectric effect at high temperatures, which is related with ionic conduction [9, 10, 12], a correlation is observed between the K content in the RC-1, RC-2, $R_1 + R_2$, R_3 and R_4 samples, which contain mica, and the position of the effect, i.e. there is a decrease in the temperature at which the effect starts as the K content rises (Table 2); this can be explained by the presence of K in cationic positions in mica, i.e. as a mobile exchangeable cation for charge balancing in the aluminosilicate structure. C_1 , C_2 and C_3 are heterogeneous samples,

including mixed layers (C_1 and C_3) in the phases presents in the mineral; mixed layers [13] are alternately disposed layers of montmorillonit; and mica (in the present case), where K can be present in cationic or fixed positions [14]. The behaviour of the second effect cannot be discussed here.

References

- L. Pauling, Proc. Nat. Acad. Sci. U.S., 16 (1930) 578.
- 2 H. W. Van der Marel and H. Beutelspacher, Atlas of IR Spectroscopy of Clay Minerals and their Admixtures. Elsevier. Amsterdam 1976, p. 191.
- 3 R. E. Grim, Clay Mineralogy. McGraw-Hill. New York 1968.
- 4 A. V. Milovsky, Mineralogy and Petrography. MIR. Moscow 1982, p. 208.
- 5 E. Nemecz, Clay Minerals. Akadémiai Kiadó, Budapest 1981.
- 6 K. C. McKenzie and B. D. Mitchell, Differential Thermal Analysis, Academic Press, London 1970.
- 7 W. Smykatz-Kloss, J. Thermal Anal., 23 (1982) 15.

- 8 A. Montes, R. Roque-Malherbe and E. D. Shchukin, J. Thermal Anal., 31 (1986) 41.
- 9 R. Roque-Malherbe and A. Montes, J. Thermal Anal., 31 (1986) 517.
- R. Roque-Malherbe, C. de las Pozas and J. Castillo-Santana, J. Thermal Anal., 32 (1987) 321.
- 11 H. Carreras, R. Roque-Malherbe and C. de las Pozas, J. Thermal Anal., 32 (1987) 1271.
- 12 J. A. Alonso, R. Roque-Malherbe and C. Gonzales, J. Thermal Anal., (in press).
- 13 E. Nemecz, opus cit., pp. 256-259.
- 14 K. C. McKenzie and B. D. Mitchell, opus cit., pp. 539–551.

Zusammenfassung — Mittels thermodielektrischer Analyse wurden einige gut charakterisierte Kaoline aus kubanischen Lagerstätten untersucht. Die Proben wurden mittels Thermoanalyse (TA), Röntgendiffraktion (XRD), Infrarotspektroskopie (IR), Elektronenmikroskopie (EM) und Elementaranalyse untersucht. Die Dielektrothermogramme zeigen, daß bei den hydratierten Versionen der augenscheinlichste Effekt der Wasserpeak ist. Der zweite dielektrische Effekt bei höheren Temperaturen wird mit der Kationenleitung in Zusammenhang gebracht, wodurch es möglich wird, Informationen über den K-Gehalt der Proben zu erlangen.

Резюме — Для испытания очень хорошо охарактеризованных каолинов кубинского месторождения был использован термодиэлектрический анализ. Образцы анализировались термическим анализом (ТА), рентгенодиффракционным методом, ИК спектроскопией, электронной микроскопией и химическим анализом. Диэлектрические диаграммы показали, что наиболее доказанным эффектом является пик воды процесса гидратации. Второй диэлектрический эффект, наблюдаемый при высоких температурах, связан с катионной проводимостью, в связи с чем можно наблюдать связь его с содержанием калия в образце.

1364